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k-LINE ITKRATIVB~: *
A CONJUGATE-ORADIKNTAPPROACN()

Univireity of California
Los Alexos Nationel Laboratory, M 608, Los

Abstract

We study the Seaersliztd conjugatg gradient schem

bssed on the k-line block Jacobi splitting A = H-N for

solving xodel two-dixemioael parabolic sad ●lliptic

difference equations AU = f. A represents tbe matrix

cba-h2~. Eigenvalues of ll-lN cluoter, ●nd the cluster

radii decreeee es cha or k increaeee. W diecw com-

putations ~ithk =4, S, 16, 32, and Cha =0, h, 2.

(*) ‘fhia work was aupportedby the U.S. Dep8rteent of
Ecergy under Contrsct W-7405-Eag-36, end by the Office

of N&val Reteareh under Contract NfK)O14-76-C-0341.

1. Introduction

Direct it~rative methods for solvin~ the system

eplit tha xetrix A Into a difference

Convergence of the methods is Sovernod by the ●igmval-

uet of the eetrix H-lH, While etudying block iterativo

methodo for tUO-diXOMiOMl ●lliptic md psrabolic

probleme, Perter ead Steummlt10 noticod tbet ulwn &ha

model problem bet ~ @ of ctroos diaional domiaaaco,

@itenvalues of the k-line block J&cobi aetrix fora-—— — —— —
clusters, Tho generalised conju@te Sradtah method2

bared on thio splitting th~rcfore ehould be 88 effec-

tive uey to aolv~ the differeacc ●qustiens, for it it

well hvn that clusterin~ brows coover~nce of the

coa,juaate sradhnt iteretee. More ue proeoot ●en nu-

nerical ●periaentt, to~thor with ●ethetes of the ci-

pvaluee, that mot ooly coofim thie ●xpoctatioo but

tlso eheu thet new cluetere theneelves coaleece,

Thenodel woMex

Ixpoee s mmh with uniform epscia~

on the Udt

Alxmm, NW87545

equerefi := {(x,y) ●B2 : Ofx, y$ 1),

●nd let (Xi~YJ) := (ih,jh). The interior mesh points

~endtbe diacrete bouadary ~eretheeete~ :=

{(xi,Yj) : lSi, jSP)end~:={(xi,yj) :i=Oor

=P+l, orj = Oor =P+l]. Amembvector U= (U~,,) ~s

● fuoction dcfiaed on the ●ntire msh $ :E~U~,

The discrate Leplsce operator in defined ●t points

in% by

wi,j ‘= (“i-l)j - Zui,j +“i+l,j)/~2

+ (“i,j-1 - %j +%,j+w2”

We mppme thet c i O ●nd O i a i 2 ●re #iven constants

sad we define ●n ●lliptic differmcc operator ~ by

IL#]i,j :=cha-2Ui,j - [~ll]i, j. (1.4)

Note thet, although the xesb vector U is defined on%,

the vectors ~U ond ~U ere defined only ●t tbe inte-

rior mesh points, Given a neeh vector?, the model

problm is to find e xesb vector U esthfyiag

~U=?in~, U= Oon~, (1.5)

After choosibg ao ordering of the aeeh poiote, we

let A be the metrix repreeentiat b2~, and get a syetem

(1.1) of order P2. ? indicstes tbe result of orderia~

the components of h%. U~in$ a otmdard ordaria~, A

cm be uritten eo tho PxP block tridiamoel metrix

AB [-E, T, -E]p (1.6)

whom ●otrieo ●renetricea of ordor PI T is tbe PxP

tridiaconel Mtrix T :9 [-1, 4+cha, -l]p gad B donotag

tbe PxP identity ~trix.

Tbeaimificanceof a
Ife=2, ~ @ven by (1.4) is @ regttlar olllptic

difference operator, Son ewluation of different

mplittiap h-e been att~td for regular probhme when

A io omtric sod pooitive dtfinite,4’0 Our 9eti9xte*

sbuu thst the k-line Jacobi eplittio$ uerho veil for

the model operator (1,4),



If u < 2, then $ is ● singularly perturbed opera- - “ ‘- “ -

tot, A is strongly diagonally dominant, and the eigen-

values of !l-lNbunch tightly. The case a = O srisea in

●pplying block iterative methods to ●lliptic problem

in higher dimensions, 10 Discrste-time schemes for the

parabolic operstor co8/8t-A8ay give at ●ach time level

●n elliptic operator c/x-A. Conditions on the ratio

h2/x then lead to singularly perturbed operctors (1.4)

withO<a <2. For example, a comon choice of T in

the Crank-Nicolson method yields a = 1.

When O < u S 2, the ~pectral radius p of fi-lN for

the k-line Jacobi scheme is 11 p s l.~aconsto Conae.

quently 0(1/(kh”)l’2) seeps of the related successive

overrelaxation method with best w are needed to reduce

any initiel error by a fixed factor, In contratt, if

tl-lNhas 2/11 distinct ●igenvalues, then in principle

the conjugste gradient method converges to the solution

from ●ny initial guess in at most 2/h stepa One hopes

for similar behavior, though not finite termination in

so few steps, if the eigenvaluea form 2/h clusters,

In section 2 we discuss Bornenumerical experiments

that suggest the eigmvalues of tl-lN for tha k-line Ja-

cobi splitting cluster strongly, A description of this

splittint for the model problm, ● statement of the

generalized conju8ate gradient method and the optiml-

ity Lheorem, and an appraisal of the ●ffect of cluster-

ing appear in section 3. We sketch in section 4 ● der-

iv~tion of bounds on the size and mmber of clusters.

Lhr method of ●nalysis mm limited to the aodel

problem. Nevertheless, we ●xpact tiiat the clusterin8

res’llta we outline here hold more ~enerally,

2. Ntmeric#l experiments—-

We uced the Beneralixed conjugate 8radimt algo-

rithm md the k-line Jacobi ~plittins (3.3) to Uolve

thti ●quation (1,1) that comet froa the model problea

(1.5) on s neah with P u 128, We chose for cha tho

when O, h, end 2. These typical values corratpond,

reapectiv~lv, to Q rcgul~r elliptic problea, ● singu-

larly Ferturb@d elliptic problem arising from a dis-

crete-tine scham for a parsbolic prnblem, ted a singu-

larly portucbod elliptic problem that cowf, froa treat-

ing theaodml thteo-dimxneimal opwator by ● block

iterativ? method whom basic block is t plmc,

To ●iniaiso the affects of roundoff, we sot ~ w O\

hmca th~ solution 10 U NO, and tho ●rror of mch it-

●rstc U(u) is the it,aratc itself, We took U(o) to be

thevoctor with c~onmtc ●ll 1. Coqutations with

diff~ront ~ or U(o) @hawedvery aisilar bahavior, The

calculations were doao on ~he Cray=l at Log Almos,

in each figure the horizontal ●xis is the number v

of iterations, and the vertical ●xis is the log of the

Euclidean mom or A-norm (see (3.6)) of the ●rror E(v)

:= U-U(V), or the Euclidean norm of the residual R(v)
;= ~-AU(v), for varioua values of k and of cha.

2
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and IR(V)I (cha=O, k=4)Figure 1. IE(V)I, IE(V)IA,
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Figure 2, tE(v)lA forvariouc k (chawO)

*
The relation between IE(v), ‘V)l, and IR(V)IA, IR

i- ohown in Fi8urc 1. Note that ll!(v)OA is monotone;

this ie predict~d by the Optimlityl’hoorm 3,2,2~5’6



.,

. In contrast, the residuals bounce

crease just before the “cliffs.”

to the residuals in practice, ●nd

●round md even in-

Oaeh& access only

should be careful not
to teminate the ●lgorithm just before s dremetic im-

provement in the ●rror is obtained.

Figure 2 displays IE(V)IA, and Figure 3 plots

lR(v)i, for cha= O and different k. Only IR(V)I is
plotted in the remaining 6rapha.

Figure 3, lR(v)! for variout k (cha~ 0)
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Figures 3-5

fixed cha, while

creasing cha for

show the effect of increaain8 k, for
Fi8urea 6-7 display the result of in-

fixed k.
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Figure 5. IR(V)I for various k (cha = 2)
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Fi#ure 6, IR(V)I forvarioue uha (k = 4)

Tb@ “cliffs and platoaua” of three trapha havo
---

been noticed before.3~3*o Their location with reopect

to tha numbar of iterations cloeol} reflects tho a-er
Fi8ure 4, III(V)I for various k (cha ■h) n of diathct clutters of eismvhluo of ?l-lN, Tho



QIMgBis of section 4 demonstrates for the k-llne block

Jacobi splitting that eigenvalucs will cluster, and in-

dicatss that cliffs should appear ●very n steps, where

n is at worst 2P+1. When n is much less than 2P, we

suspect that the clusters themselves are coalescing.

2F
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0 40 80 120

‘“)1 for various cha (k = 16)Figure 7. IR

The plots show that convergence improves us cha or

k increases; they ●lso #uggest that n is significantly

less than 2P, When cha is O or h, it app@ars that n s

75, 55, 45, 35 for k f 4, 8, 16, 32, rccpcctiv~ly,

Convergence is so rspid that no plateau appears when

cha m 2, It is possible that in fact n is about twice

as big as we now believe; to ch~ck this point, compu-

tations in high precioion are being done, But even if

n 9 150, ●bout 40% of th clusters have coelesced,

3. ‘Nm cm.fulate gradi~nt nethnd with k-line blocks

The k-line block Jecobi split-

In the horizontal k-line block structurt9’10”1—— —
●sch block of U compriaee the umkmoumU

it~
associated

with the points (Xi,yj) on k consecutive horizontal

Srid linem, Let k bc a divisor of P, 00 that

P ~ kQ for same intqw Q, (3.1)

Th* k-line blocks areu, := (Ui k(s-ll+j : 1 s i i P,

1 #j Sk) (1 f OS Q), ‘Lhied;cqooitionor U in~

duc~s a block otructura in A. If C is the PxP identity

M S and R tre the kxk block natricee

s := [-E, T, -E]k, R :=

then A is the block tridiagonal

OE

00

❑atrix

1

[-R, S, -Rt]Q

whose entries ●re matrices of order kP,

A direct iterative scheme for solving (1,1) splits

A as in (1.2). Choosing ~ first guess U(o), we get a

‘v)] bysolvingm (v+l) = ~(v)+~. men A
sequence {U

is nonsingular the sequence converges to the solution

of (1.1) independently of U‘0) if and only if

P :=max {IAI : det(AM-N) = 0],

the spectral radius of M-lN, satisfies p < 1. Hence we

are”led to study th~ ●igenvalue problem

AjflJ.n, (3,2)

In the k-line ‘acobi scheme, A splits into the

block matrices

II := [o, S, O]Q, N := [R, O, Rt]Q; (3.3)

it is evident from (1,6) and (3.3) that A and H are

s~tric ●nd positive definite and N is nonnegative,

Hence p < 1, ●nd we may rewrite (3,2) to get

uAU = NU, o :8 a/(1 - A), (3.4)

Further=are, nonzaro eigenvalues of !I-*N octur in

sisned pairs iA, 1,9,11,12,13

The generalized conjuiate Sradient wtho~

Splittings (1,2) also play a role in the general-

ized conjugate gradient scheme,2 The method assumes A

to be e~tric positive definite. In this section M

is any syaetric poeitive definite matrix of the sane

order # as A,

Algoritlu 3,1, The aeneralixed conjuiate iradient-.
method . Choose M, Let U(o) be ● first guess ●t the

oolution U of (1.1), eet v := O, ●nd fix en acbitrary

‘v)) by tha followin8V(-*), Oenerate the sequence [U

Itepw , Step 1: Obtain 2(V) ae the solution of

Hz(v) ~~- AU(V); (3.5)

stop if Z(v) ■ 0. Step 7: Compute

{

o ifvro

% ‘g ~z(v),”z(v)), (z(v-l),”z(v-l)l tfv>o,



“(v) := -p) +Pvv(v-l).

Step 3: Compute

au := (#) ,M@)/(v(v) ,Av(v)),

“(”+1) :=

rndvance V, and

Note that

coefficients au

u(v) +avvb?,

return to step 1. 0

~ziv) = O iffU(v) solves (1.1). The

and ~vare chosrn ao thtt (Z(i),NZ(j))

=oifi#j. It follows from this M-orthogonality

property that {U(v)] converges to the solution U of

(1.1) in at most ~staps. In practice, roundoff cauaea

a gradual loss of M-orthoBonality ●nd consequent fail-

ure of the finite termination property; hence we view

the method as an iterative scheme. ~) 3,5

The key result ●bout this scheme ia the Optimalisv

Theorem, which -- neglecting roundoff -- describes the

convergence of {U(v) ). We let ~ be the aet of real

polynomials of degree no greater than V, ●nd recall

that

by U

ized

any positive definite matrix $ defines a norm by

IXIB := (X, BX)*/2. (3.6)

T&eorem 3.2,
‘he “tima’v::’:,::ethe solution of (1.1), and by {U

conjugate gradient iterates. Then

,U(”+l) - ul~ (3.7)

=min (1[1 - Kp(!()] (U(0) - U)l; : p 6 ~),

where

K :=H-’A= I - tf-lN. 0

Let m(K) be the minimal polynomial of

m(K) = 0. LetK1t ,.., Kn be the dietinct

(3.8)

K, S0 that

eigenvaluee

of K. Because K is aimjlar to s real a~tric matrix

(hence diugonalizable), ●(K) s flnj=+ K-Kj)+ NO Kj is
zero, IO m(K) s [l-Kp(K)]tlj(-Kj) for some particular

P@~.~. Them remarke prove:

3.3. If K hss exectly n distinct ei8en-
Vvalues, then U = U tnd so the Qeneralised conjugste

ttadfent method conver8es in at moot n steps, o

The effect of clust~

The original conjugate grtdient method6 set Ii M 1,

Corollary 3.3 IayB to pick H so that K has se fewdis-

tinct ei~envalues u poosible, subject to the condition

that (3,5) bc “Qs@y” to solve, Hmce the choice H = A

is not practical. But if the ei6envalue* of Z clu9ter

●bout n distinct values (R ) IU(n)-UIA should be
j’

small. Now we quantify thie ●xpectation.

By (3.8) the eigenvalues Ai of M-lN and Ki of K

are related according to the ●quation K = l-A. We

therefore impose conditions on the eigenvalues of K in

term of Ai. These conditions ●re motivated by the

facts regardin6 the k-line Jacobi splittin6 (3,3) aet

down before. We ●esume that the spectral radius p of

ll-lN ia les8 than 1, the nonzero eitenvaluea oftl-lN

occur in signed pairs *A , and all the eigenvalues of
j

I’I-lN cluster. Precisely, we cuppose there ●re nonaeg*-

tive numbers br and Ar, 1 S r 5 a, so that for any non-

zero Ai there is ●n r for which

lAi -~rl S Llr or lAi+~r

Without loss of generality we may

determine the behavior of [U(v)),

nmd side of (3.7). Clearly

s &r. (3.9)

*
take each Ar < 1. To

we appraise the right

(K - [l+~j])(K - [l-ij])
6(K) := (1 - K) n:=,

(1 - i:)

has tx required form l-Kp(K),

of K. Evidently Ki = 1 iff Ai

If K~ # 1, then Ai # O, ●nd by

.

J

Fix eny eigenvalue

= O, ●nd then @(Ki)

(3.9) for some r

.

‘i
= o.

lAillAi - ArllAi +Arl
16(K~)[ S Q(Ai, r)

- ~2lr

S 2LlrQ(Ai, r)/(1 - ~~),

where
1A: -$

‘(A’r) ‘= “j#r
l-i;

(3.10)

It follows that ir. come norm [e.g., the Euclidean norm

of the diagonal matrix to which K is eimilar) 6(K) in

of order Mxr(dr) in magnitude, ●nd therefore mall if

th~ clusters are mall, By the Optiaality Theorem 3.2,

then, IU(2s+1)-Ul~ x O(MX ((!r : 1 S r S s)).

Thus we need to determine whether the ●igenvalues

of ‘(, or tqufvelcntl~ the eisenvalues of H-lN, cluster

for tu. i-line block Jacobi splittins (3.3).

4, btimetec of the eiRenveluee ,

Ilecause the spectral radius of tl-lN ic lees than

1, we cm convert the eigeaval~problea (3.2) for A

into the ei8envalu@ problea (3,4) foru. We restrict.—



(r) ,=sttention to the caae k 2 3. The test vectors U..~..— l,j
$ sin nirh show that esch u is an ●igenvalue of

uB[~(r)]$ (r) = fi$(r) (4.1)

for sone r, 1 S r S P. Here+ (r) ~EDand

P(r) := 2(2 - cos nrh) + cha; (4.2)

B[p] is the tridiagonal matrix [-1, ~, -11 of order P.

~is also a tridiagonal matrix of order P, whose ●ction

on vectors $ := ($1, 42, . . ,$p)t is given by

lSSSQ-I, U=O

lSsSQ-l, cr=l,

[i+]j := o for <,ny other subscript j.

B is positive definite and % is synmetric, so for

each r there are P linearly independent ●igenvectors *

aud P (counting multiplicities) associated eigenvalues

UOf (4.1). Tt follows that this aeparatiou of varia-

blea procedure provides all the eigenvectors of (3.4).

Before proceeding, we recall some properties of

the Gausaian algorithm for tridiagonal systems. 7,12

Lema 4.1. Let k 2 3. Consider the lintar system

O (1 Sj S k-2),

are given. Defioe {Ej) by

- ‘j-l ) (1 s j s k-2) (4,3)

‘k
:= EiE2. ..E2,2, bk :=Ek-20 (4,4)

Then

$1 = ak$k.~ + bk~o, +k.~ = bk$k.1 + ●#O’

Furthermore, {Ej) ‘e a monotone increasin8 sequence in

tha intewel [0,1], ●nd ●a k + m

bk tba := (B- (P2 - 4)1’2)/2, ●k 40.

When P > 2, this converSenca is exponentially faut, ●nd

when @= 2 we have

Mowfix r ●nd

to climinmte those

in (4.1) for which

ak = I/(k-l), bk = (k-2)/(k-1). o

d-fine @by (4.2). Wsuse Lame 4.1

●quationt and c6rreapondin8 unknowne

the r,ight hcnd side ie aero.

Lenzna4.2. Let u # O be an eigenvalue and * the

associated ●igenvector of (4,1), and set

Y := 1 + 1/0, (4.5)

‘2a-l ‘= $ks, !2s ‘= $k~+l (1 $ s $ Q-l)”

Then (must catisfy the hosmgeneoua aystem~~ = O,

where ~ := ~(~,y) is the block tridiagonal matrix

x := [C, Di, Ct] (1 S i S Q-1)

with 2x2 blocks

I kbk+l ‘y ~-bk -y

D1 ‘= D :=9 i 9
‘Y ~-bk ‘Y ~-bk

l%bk -y ok -a

‘Q-1 ‘= 9 c := Cl
‘Y &bk+l 00 “

Nonzero eigenvalues u of (4.1) thus correspond to

valuea of y for which A ia singular. We bound y by a

Gerschgorin argument, and ao ●stimate nonzero eigenval-

ues

any

Aof (3,2) -- for y= l/A from (4.5) ●nd (3.4).

Theorem 4.3. If the matrix ~ is sin@ar, then

aonzero eigenvulue A of M-*N satisfies

IIAI - Arl S 6(13,k)/(B(r) - bJ S 6(@,k), (4.6)

where

6(~,k) :=ak+ (bm- bk+l), (4.7)

i r .= 2/[P(r) + (lI(r)* - 4)1’21. O

We see then that nonzero~eigenvalues A of (3.2)

cluster about the 2P valuer tAr, 1 S r 5 P. The situa-

tion described after Corollary 3.3 now holds, ●nd the

numbers dr of that discussion ●re the values 6(~(r),k)

d~fined by (4.7), (4,3), ●nd (4.4) with p= P(r). SO

even in the worst caae, in which c = O ●nd iainr{p(r))
2* 4-2COS nh ~ 2+(nh) , we have no more than 20+1 clus-

ters with a = P and 6r = O(h).

Inafsct, the eigenvalues bunch in another ~ay ag

well, Ar is a continuous function of rh, and lAr - Aql

= 0(h2) when r snd q are near P. So the cluetere them-

selvm coalesce, for their centers have only 0(h2) $ep”

eration for lar8e r, The plots in section 2 indicate

that many of the cl:stere coaleece, In Fi8ure 8 r is

the horizontal and Ar the vertical ●xis. For large r

these curves are flat: ~r chantee by less than 0.1 if

r > 62 [33 if cha= 2], lets than O.01 if v > 105 [97],
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Figure 8. Ar for Cha= O, h, 2.

If $ > 2, the dominant term of the cluster radiua

6(p,k) is ak, for the term dk := b~-bk+l converges to O

rapidly; this ia shown in Table 1 below. When ~=2,

‘k= ak+l” 6(p,k) decreaaea aa ~ or k increaae.

k ak

4

8

16

24

32

4

B

16

24

32

4

8

16

24

32

s333-o .?26-0

B142-0 .102-0

,652-1 .413-1

,413-1 .220-1

.294-1 .130-1

.330-0 .172-0

.134-0 .571-1
,507-1 0112-1

.237-1 .262-2

.116-1 .633-3

.667-1 .920-4

.344-3 .24s-8

.913-8 .173-17

.243-12 .122-26

.644-17 .0

.560-0 @=4 - 2coa nh

.244-O bm= .97594:9-0

.106-0

.632-1

.424-1

.502-0 @=2+h

.191-0 bm= .9157456-0

.619-1 h= 1/129

,263-1

,122-1

.668-1 $=4

,344-3 bm= ,2679492-O

.913-8

,243-12

.644-17

Table I. Clutter radii f3(B,k~for different k ●nd @.

The jth ftctor lA2-~~[/[1-~~1 of9(A,r) defined I’Y

(3. 10) ia no greater than 1 whonev?r 2A2 S 1+A2, It is

icleer from (4,/, thet 2~~ S 1 wheneve$ (j) 2 3/~2 W

2,12132. ~Table 2 civua very peusi~istic bounds on~ h

terms of(j(r) :=fl~(I/(1-i~) :3~~>l,j$r),~Q~s

●uch amsller than Q becauxe of the factors lA2-A~l.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

.
cha Q( )r

o .3287627+9

h .5976592+7

21

.
Table 2. Bounda Q(r) on the product Q(A,r).
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